Name and Surname:

Grade/Class: 11/...... Mathematics Teacher:

Hudson Park High School

GRADE 11 MATHEMATICS FINAL ASSESSMENT Paper 2

November 2021

Marks

: 150

Date

: 29 November 2021

Time

3 hours

Examiner: SLT

Moderator(s): PHL

INSTRUCTIONS

- 1. Illegible work, in the opinion of the marker, will earn zero marks.
- 2. Number your answers clearly and accurately, exactly as they appear on the question paper.
- 3. NB Leave 2 lines open between each of your answers.
- 4. NB Fill in the details requested on the front of this Question Paper and Answer Booklet.
 - Hand in your submission in the following manner:

Answer Booklet (on top)

Question Paper (below)

Do NOT staple the Answer Booklet and Question Paper together.

- 5. Employ relevant formulae and show all working out. Answers alone *may* not be awarded full marks.
- 6. (Non-programmable and non-graphical) Calculators may be used, unless their usage is specifically prohibited.
- 7. Round off answers to 2 decimal places, where necessary, unless instructed otherwise.
- 8. If (Euclidean) GEOMETRIC statements are made, REASONS must be stated appropriately.

OUESTION 1

1.1. Given the following data values:

										_
10	0,5	15	17,7	20	21	22	23,6	24	26,7	29

1.1.1. Determine the

- 1.1.2. How many data values lie below 1 standard deviation of mean?
 Show all working out. (2)
- 1.1.3. Comment on the distribution of the data. Justify your answer. (2)

1.2. The box and whisker diagram below shows the performance of a Grade 11 Class in a Standardised Test. Values are in %

- 1.2.1. Would a result of 91 % be classified as an outlier? Justify your answer. (3)
- 1.2.2 If there are 28 learners in the class, approximately how many learners achieved between 40 % and 60 %? (2)

[13]

The results for the November Paper 2 examination, for a certain school, are presented below in the form of an ogive curve:

- 2.1. How many Mathematics learners are there at this school? (1)
 2.2. For the following, show all working out and clearly indicate (on the ogive) where any values were read off:
 2.2.1. Determine the upper quartile test result. (2)
 2.2.2. How many learners got more than 56 %? (2)
 2.3. State the modal class, in the form ··· < x ≤ ···. (1)
- 2.4. Write down the position of the twentieth percentile. (1)

[7]

JUESTION 3

Lines ℓ_1 and ℓ_2 are shown below. The equation of ℓ_1 is 2y + x = 4 and C(0; -6).

3.1. Calculate the size of

- 3.1.1. α (2)
- 3.1.2. β
- 3.2.1. Calculate the gradient of ℓ_2 . (1)
- 3.2.2. Write down the equation of ℓ_2 . (1)
- 3.2.3. Calculate the coordinates of D. (3)
- 3.3. Determine the area of $\triangle CDE$. (3)

[13]

A(-2,5;1) is the centre of the circle passing through points B(3;0) and C. BC = 5 units and BE is a tangent to the circle at point B.

(2) 4.1.1. Calculate the gradient of AB. Give the reason why $\widehat{B}_1 = 90^{\circ}$. 4.1.2. (1)4.1.3. Determine the equation of tangent BE. (3)4.2. Calculate the length of AB (in surd form) 4.2.1. (2)size of \widehat{A}_1 4.2.2. (4)Determine the size of \widehat{D} . 4.3. (2) 4.4. Determine the coordinates of F (not shown), if BAF was the diameter of the circle. (2) [16]

5.1. In the diagram, $PT = \sqrt{5}$, P(x; -2) and θ are shown:

Without the use of a calculator, determine the following, simplifying fully:

$$5.1.1. \sin \theta (1)$$

5.1.2.
$$\tan(1980^{\circ} - \theta)$$
 (5)

5.2. Without the use of a calculator, simplify fully:
$$\frac{2\cos^2(180^\circ + \theta) - 5\sin(270^\circ + \theta) - 3}{3\cos^2\theta + \cos(-\theta) + 3\sin^2\theta}$$
 (7)

5.3. Prove the identity.:
$$\frac{1}{\tan \theta} = \frac{\sin^2 \theta}{\tan \theta - \sin \theta \cos \theta}$$
 (5)

5.4. Determine general solutions of:

5.4.1.
$$3\cos\theta + 2\sin 170^\circ = 0$$
 (3)

5.4.2.
$$\sin(2\theta + 10^\circ) + \cos(\theta - 50^\circ) = 0$$
 (5)

[26]

OUESTION 6

Shown below are the graphs of $f(x) = \sin 2x$ and $g(x) = \sqrt{3}\cos 2x$ for $-90^{\circ} \le x \le 90^{\circ}$. The graphs intersect at points A and B.

- 6.1. Determine the general solution of: $\sin 2x = \sqrt{3}\cos 2x$. (3)
- 6.2. Now, supposing that $x_A = -60^\circ$ and $x_B = 30^\circ$, use the graphs to solve for x, where $-90^\circ \le x \le 90^\circ$:

6.2.1.
$$g(x) < 0$$
 (2)

6.2.2.
$$f(x).g(x) \ge 0$$
 (3)

6.2.3.
$$f(x) - g(x) > 0$$
 (2)

6.2.4.
$$x. f(x) \le 0$$
 (3)

- 6.3. State the range of $h(x) = 5 \sin 2x 1$. (2)
- 6.4. Describe the transformation from f to i, if $i(x) = -\sin(2x 50^{\circ})$. (3)

[18]

In $\triangle ABC$, AB = AC, AB = x and $\widehat{A} = 2\theta$.

- 7.1.1. Determine an expression for \hat{C} , in terms of θ . Simplify fully. (2)
- 7.1.2. Hence, determine an expression for BC in terms of x and θ . (3)
- 7.2. If $\theta = 20^{\circ}$ and x = 15 cm, calculate the area of \triangle ABC. (2)
 - [7]

8.1. The solid below was made by drilling a right circular cone out of a right rectangular prism. AB = 13 cm, BC = 10 cm, AD = 15 cm, r = 3 cm and h = 4 cm.

For the solid, calculate the:

8.2. The solid below was made by placing a hemisphere on top of a cylinder. The sphere and cylinder have the same radius of x units. The height of the cylinder is (10-7x) units.

8.2.1. Show that the total surface area of the solid is given by:

$$TSA = 20\pi x - 11\pi x^2 \tag{3}$$

8.2.2. Now, determine the maximum possible total surface area that the solid can have. (3)

[14]

O is the centre of the circle and OAB || CQ. PQ = 6x, AB = x + 2 and OP = 2x + 7.

9.1. Prove that
$$0\widehat{A}P = 90^{\circ}$$
. (3)

9.2. Calculate the value of
$$x$$
. (6)

[9]

10.1. O is the centre of the circle and $\hat{B}_2 = 80^{\circ}$.

Determine the size of \widehat{O}_1 .

(4)

10.2. BCDE is a cyclic quadrilateral. $\widehat{BCD} = 5x + 15^{\circ}$, $\widehat{BAE} = 2x + 10^{\circ}$ and $\widehat{BFC} = 8x$.

Calculate the value of x.

(5)

Prove that AECB is a cyclic quadrilateral.

(5)

[14]

11.1. ABC is a tangent to the circle, with centre O, at point B.

Prove the THEOREM which states that $\widehat{BDE} = \widehat{EBC}$.

(5)

Prove that:

$$\widehat{D}_2 = \widehat{D}_4 \tag{3}$$

11.2.2.
$$\widehat{H}_2 = \widehat{E}_1 + \widehat{E}_2$$
 (5)

TOTAL 150